MicroRNA-1 and microRNA-133a expression are decreased during skeletal muscle hypertrophy.

نویسندگان

  • John J McCarthy
  • Karyn A Esser
چکیده

MicroRNAs (miRNAs) are a class of highly conserved, noncoding RNAs involved in posttranscriptional gene regulation. A small number of muscle-specific miRNAs have been identified and shown to have a role in myoblast proliferation and differentiation as well as embryonic muscle growth. The primary objective of the present study was to determine the expression level of the muscle-specific miRNAs in the soleus and plantaris muscles and whether their expression in the plantaris was altered in response to functional overload. Of the miRNAs examined, only miRNA-206 was differentially expressed between soleus and plantaris muscles, as reflected by the sevenfold higher expression in the soleus for both the primary miRNA (pri-miRNA) and mature miRNA (miR). Following 7 days of functional overload, transcript levels for both pri-miRNA-1-2 and pri-miRNA-133a-2 increased by approximately 2-fold, whereas pri-miRNA-206 levels were elevated 18.3-fold. In contrast, expression of miR-1 and miR-133a were downregulated by approximately 50% following overload. The discrepancy between pri-miRNA and miR expression following overload was not explained by a change in the expression of components of the miRNA biogenesis pathway, since Drosha and Exportin-5 transcript levels were significantly increased by 50% in response to functional overload, whereas Dicer expression remained unchanged. These results are the first to report alterations in expression of muscle-specific miRNAs in adult skeletal muscle and suggest miRNAs may have a role in the adaptation to functional overload.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MicroRNA-133a protects against myocardial fibrosis and modulates electrical repolarization without affecting hypertrophy in pressure-overloaded adult hearts.

RATIONALE MicroRNA (miR)-133a regulates cardiac and skeletal muscle differentiation and plays an important role in cardiac development. Because miR-133a levels decrease during reactive cardiac hypertrophy, some have considered that restoring miR-133a levels could suppress hypertrophic remodeling. OBJECTIVE To prevent the "normal" downregulation of miR-133a induced by an acute hypertrophic sti...

متن کامل

An Intragenic SRF-Dependent Regulatory Motif Directs Cardiac-Specific microRNA-1-1/133a-2 Expression

Transcriptional regulation is essential for any gene expression including microRNA expression. MiR-1-1 and miR-133a-2 are essential microRNAs (miRs) involved in cardiac and skeletal muscle development and diseases. Early studies reveal two regulatory enhancers, an upstream and an intragenic, that direct the miR-1-1 and miR-133a-2 transcripts. In this study, we identify a unique serum response f...

متن کامل

High-Salt Intake Suppressed MicroRNA-133a Expression in Dahl SS Rat Myocardium

Salt-sensitive individuals show earlier and more serious cardiac damage than nonsalt-sensitive ones. Some studies have suggested that microRNA-133a could reduce cardiac hypertrophy and myocardial fibrosis. The current study aims to investigate the different functions of high-salt intake on salt-sensitive (SS) rats and Sprague-Dawley (SD) rats and the involvement of microRNA-133a in these roles....

متن کامل

Cardiac Disease Status Dictates Functional mRNA Targeting Profiles of Individual MicroRNAs.

BACKGROUND MicroRNAs are key players in cardiac stress responses, but the mRNAs, whose abundance and translational potential are primarily affected by changes in cardiac microRNAs, are not well defined. Stimulus-induced, large-scale alterations in the cardiac transcriptome, together with consideration of the law of mass action, further suggest that the mRNAs most substantively targeted by indiv...

متن کامل

Acute resistance exercise modulates microRNA expression profiles: Combined tissue and circulatory targeted analyses

A subset of short non-coding RNAs, microRNAs (miRs), have been identified in the regulation of skeletal muscle hypertrophy and atrophy. Expressed within cells, miRs are also present in circulation (c-miR) and have a putative role in cross-tissue signalling. The aim of this study was to examine the impact of a single bout of high intensity resistance exercise (RE) on skeletal muscle and circulat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 102 1  شماره 

صفحات  -

تاریخ انتشار 2007